1,840 research outputs found

    Periodic impact behavior of a class of Hamiltonian oscillators with obstacles

    Get PDF
    AbstractIn this paper, we study the existence of harmonic and subharmonic solutions of a class of non-smooth Hamiltonian systems, then apply its results to the vibration problems{−x″=q(x)|x′|2+g(t)x′+f(t),x(t)>0,x′(t0−)=−x′(t0+),ifx(t0)=0. Infinitely many harmonic and subharmonic bouncing solutions are always obtained if q(x) satisfies some coercive conditions

    Characterization upon electrical hysteresis and thermal diffusion of TiAl3Ox dielectric film

    Get PDF
    In this paper, we have investigated the electrical properties of TiAl3Ox film as electrical gate insulator deposited by pulsed laser deposition and presented a simple method to describe the thermal diffusion behaviors of metal atoms at TiAl3Ox/Si interfacial region in detail. The TiAl3Ox films show obvious electrical hysteresis by the capacitance-voltage measurements after post-annealing treatment. By virtue of the diffusion models composed of TiAl3Ox film and silicon, the diffusion coefficient and the diffusion activation energy of the Ti and Al atoms are extracted. It is valuable to further investigate the pseudobinary oxide system in practice

    Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion

    Get PDF
    The aerosol effects on clouds and precipitation in deep convective cloud systems are investigated using the Weather Research and Forecast (WRF) model with the Morrison two-moment bulk microphysics scheme. Considering positive or negative relationships between the cloud droplet number concentration (Nc) and spectral dispersion (ɛ), a suite of sensitivity experiments are performed using an initial sounding data of the deep convective cloud system on 31 March 2005 in Beijing under either a maritime (‘clean’) or continental (‘polluted’) background. Numerical experiments in this study indicate that the sign of the surface precipitation response induced by aerosols is dependent on the ɛ−Nc relationships, which can influence the autoconversion processes from cloud droplets to rain drops. When the spectral dispersion ɛ is an increasing function of Nc, the domain-average cumulative precipitation increases with aerosol concentrations from maritime to continental background. That may be because the existence of large-sized rain drops can increase precipitation at high aerosol concentration. However, the surface precipitation is reduced with increasing concentrations of aerosol particles when ɛ is a decreasing function of Nc. For the ɛ−Nc negative relationships, smaller spectral dispersion suppresses the autoconversion processes, reduces the rain water content and eventually decreases the surface precipitation under polluted conditions. Although differences in the surface precipitation between polluted and clean backgrounds are small for all the ɛ−Nc relationships, additional simulations show that our findings are robust to small perturbations in the initial thermal conditions. Keywords: aerosol indirect effects, cloud droplet spectral dispersion, autoconversion parameterization, deep convective systems, two-moment bulk microphysics schem
    corecore